Systems Analytics Engineer IV - (E4)

Applied Materials

Santa Clara, CA 95054

Posted 1 month ago

Job Description

Are you inspired by how data analytics can be used to diagnose, improve and add value to hardware? Are you a natural team player who loves to solve complex problems? If yes, then you’ll fit right in here at Applied Materials.


We are a fast-growing team of doers who are bringing domain knowledge-aided data analytics to our semiconductor equipment. We are working passionately to transform our customers’ experiences in ground-breaking ways new to this industry. We will give you the guidance, tools and support you need on this journey with us that is rewarding, fulfilling and fun!


Position Overview


We are seeking a talented individual with general expertise and demonstrated achievement in hardware analytics, systems engineering and data science. You will be a member of the Analytics Team that is responsible for developing data-driven analytics solutions to optimize semiconductor manufacturing. Your work will involve developing tools to collect, analyze, and visualize diverse data sets to address a variety of high value engineering issues. These tools will then be used to enhance hardware performance for both internal and external customers.


The ideal candidate should be comfortable working cross-functionally as well as delivering results independently. The position requires willingness to learn new technologies, solving complex problems, identifying innovative solutions and troubleshooting.


Job Responsibilities


+ Develop and implement analytics-driven optimization through deployment of software and/or algorithms


+ Serve as a technical lead for highly cross-functional internal R&D initiatives


+ Drive product enhancements with both classical engineering and data science techniques


+ Champion new ML/AI based optimization techniques across the organization


+ Fine tune application performance, troubleshoot and resolve data processing issues


+ Provide end-to-end solution for a given problem and effectively communicate solutions to the team


+ Thrive in a dynamic, multi-team fast-paced, rapid development, startup-like environment as well as work independently


Minimum Qualifications


+ 5+ years of demonstrated achievement with hardware-oriented analytics


+ Hardware or process engineering experience in semiconductor manufacturing or similar field


+ Degree in quantitative field (e.g. Computer Science, Engineering, Statistics, Chemical Engineering, Mechanical Engineering, Electrical Engineering)


+ Understanding of physical systems (e.g. signals processing, sensors, semiconductors, manufacturing, microfluidics)


+ Experience with machine learning or other statistical data analysis techniques, such as regression, time series analysis, hypothesis testing, classification, or clustering


+ Experience performing data extraction, cleaning, analysis, and visualization for medium to large datasets


+ Experience with at least one programming language (Python, R, Java, etc.) and writing SQL queries


+ Experience with scientific computing packages such as scikit-learn, numpy, SciPy, pandas, dplyr, or ggplot2


**Qualifications**


**Education:**


**Skills**


**Certifications:**


**Languages:**


**Years of Experience:**


**Work Experience:**


**Additional Information**


**Travel:**


Yes, 10% of the Time


**Relocation Eligible:**


Yes


Applied Materials is committed to diversity in its workforce including Equal Employment Opportunity for Minorities, Females, Protected Veterans and Individuals with Disabilities.


Applied Materials is the leader in materials engineering solutions used to produce virtually every new chip and advanced display in the world. Our expertise in modifying materials at atomic levels and on an industrial scale enables customers to transform possibilities into reality. At Applied Materials, our innovations make possible the technology shaping the future.



Related Jobs

    Browse Jobs | Terms & Conditions | Privacy Policy | Unsubscribe
    POWERED BY    

    POWERED BY